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Abstract. The percolation of Kandel, Ben-Av and Domany clusters for a two-dimensional fully
frustrated Ising model is extensively studied through numerical simulations. Critical exponents,
cluster distribution and fractal dimension of a percolating cluster are given.

1. Introduction

A two-dimensional fully frustrated (FF) Ising model is a model with Ising spink
where the interactions between nearest-neighbour spins have mafduus) and sign

+1 (ferro/antiferromagnetic interactions) and where the signs are chosen in such a way
that everyplaquette(i.e. the elementary cell of the square lattice)risstrated i.e. every
plaquette has an odd number-et interactions so that the four spins of the plaguette cannot
simultaneously satisfy all four interactions. In figure 1(1) we give an example of such a
deterministic interaction configuration. In a plaquette of the FF model we can have only
one or three satisfied interactions. The FF model has an analytical solution [1] and a critical
temperature af,. = 0.

Since single-spin dynamics for FF suffers critical slowing down, a fast-cluster dynamics
was introduced by Kandel, Ben-Av and Domany (KBD) in [2].

The KBD clusters are defined by stochastically choosing, on each plaquette of a
chequerboard partition of a square lattice, one bond configuration between the three shown
in figure 1(2).

The probability of choice depends on spins configuration on the plaquette and it is a
function of temperaturecprrelated site—bond percolatiof8]). When there is only one
satisfied interaction the zero-bond configuration is chosen with probability one. When
three interactions are satisfied the zero-bond configuration is chosen with probability
Py = e ¥/&D (wherek is the Boltzmann constant arid the absolute temperature), the
bond configuration with two parallel bonds on two satisfied interactions is chosen with
probability P, = 1 — Py and the third bond configuration has zero probability. Two sites
are in the same cluster if they are connected by bonds. For the sake of simplicity from now
on we choose//(kT) =1/T.

Reference [2] has stimulated several works [4, 5] that pay attention mainly to dynamics
and to cluster numbers and cluster sizes. In [5] numerical simulations on relatively large
FF lattice sizes (number of site¢ = 60°~12F) supported the idea that the KBD clusters
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Figure 1. (1) Example of a two-dimensional FF lattice: the spin is on the vertices; full lines
represent ferromagnetic interactions) and broken lines antiferromagnetic interactions/{.

(2) Plaquette bond configurations: a, zero bond; b, two parallel vertical bonds; c, two parallel
horizontal bonds.

(a) (b)

(c) (d)

=]
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(e) ()

Figure 2. Typical KBD clusters on a FF lattice with sizé = 60 with periodic boundary
conditions: @) atT = 1; (b) at 7 = 0.65; (c) at T = 0.53 slightly aboveT),(L) ~ 0.52; (d) at
T =052~T,(L); (e) at T ~ 0 (largest cluster);f() at T ~ 0 (the second cluster).
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Figure 3. Mean cluster size§, percolation probabilityP, cluster numbetV,, nhumber of bonds
per lattice siteN,, mean size of largest clustéf and mean size of second largest clusigr
versus temperaturg for lattice sizesL. = 100, 200, 300, 400. The error bars (often included in
symbols) are the statistical errors.

Table 1. Numerical estimates df,(L) and D(L) for L = 60-400. The way used to evaluate
T,(L) and D(L) give us confidence only on digits not in parentheses.

L 60 80 100 120 200 300 400

T,(L) 051(7) 0.48(1) 0.456) 043(7) 0.39(2) 0.36(1) 0.34(2)
D) 17(2) 1.7(6) 17(7) 17090 182 1.8(5) 1.8(6)

represent spin-correlated regions (as Coniglio—Klein clusters [6] in the Ising model) and
consequently percolation temperatdkgcoincides with critical temperaturE., percolation
exponents coincide with critical ones and KBD-clustersTatare two-dimensional self-
avoiding walks (SAW) at point [7].

In this paper we extensively study percolation features of KBD-clusters, considering
very large lattice sizesN = 100°—40C), and give numerical results on critical exponents,
cluster distribution and fractal dimension at the percolation point.
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Figure 4. Scaling forS, P and N, following assumptions (1), (2) and (3) for data of systems
with sizesL = 100, 200, 300, 400. The parameters &7» = 0.0000+ 0.0001,o = 0.1+ 0.1,

B =0.00+0.01,y =2.00+0.01 andv = 1.00+ 0.01 are such that the data for different sizes

L collapse on single curves (one for each graph). These curves are, respectively, the universal
functions fs, fp and fy.. The errors are estimated observing the range of parameters within
which the data points approximately collapse.

2. Critical exponents and the percolation point

We consider finite systems with increasing siZe £ 100-400) with periodic boundary
conditions.
A cluster percolates when it connects two opposed system sides. For everk size
there is a percolation temperatufg(L). With 7, (without any argument) we mean the
percolation temperature in the thermodynamic limit, £g(L) — 7, for L — oo. In this
limit percolating clusters are present&t< 7, but not at7 > T7,. In figure 2 we show

typical clusters at several temperatures for a finite system withIsize60.

For everyL we have studied the mean cluster size- Y sn; (wheres is the cluster
size,n the cluster number of sizasper lattice site and the sum is extended over all finite
clusters), the percolation probability =1 — > sn,, the cluster numbeN, = )__n,, the
number of bonds per lattice sifé,, the mean size of the largest (percolating) clusteand
the mean size of the second largest (percolating) clugteThese quantities are shown in
figure 3 for L = 100-400. Note that fof — 0 the bonds cover 50% of lattice interactions
(that is the random-bond percolation threshold on the square latSgeyoes to a finite
value (as predicted by KBD [2] and already verified in [4]) and occupies almost 35% of the
lattice, and thatS; occupies almost 65% of the lattice. &At= 0 only two clusters survive,
as shown in figures 2{ and ).

Now we will give numerical estimates of critical exponents that characterize the KBD-
cluster percolation.

We know [8] that in the thermodynamic limit the mean cluster size diverges fer T,
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n, vs. s/400 for L=100

ol T=0.42
-5
10 F
._.6-
10 F
-3
E 10 E-
_4: — i
10 10 L
_5F s
10°L 10
b ~65
-6 10 F
10 E. | ! sl [ !
-2 5 10 15 20 25
-3 10 ¢
10§ 10~35
£ E"
—4F 3
10 ¥ 10 'k
-5F —5E
1055' 1065
-6f 10
10 ¢ —7E
E 10 k
-7 E
L - I N T S 10'8:...|....|... e by ol
5 10 15 20 25 5 10 15 20 25

Figure 5. Cluster distributiom, versus cluster size for a system with siz& = 100 at several
temperatured’. Every bin is large 400 unities in cluster size. The percolation temperature for
this system size i, (L = 100) ~ 0.46 then for allT > 0.47, even if the highest bin is not
empty, there are only no percolating clusters. Note that fof adlboveT), (L) itis n, ~ €~*

and that the distribution become symmetric for— 0.

the percolation probability goes to zero in the lirfiit— 7 and the cluster number goes
to zero for7 — T .

We assume that nedl, the connectivity lengthé (i.e. the typical linear cluster size)
diverges ag ~ |e%T —e ">V, the mean cluster size diverges$s- |e %7 —e /1|77,
the percolation probability goes to zero As~ |e %" — e ?1»|# and the cluster number
goes to zero asV. ~ |e¥T — e ?T|2=« The last relations are definitions of critical
exponentsy, 8, y andv.

By standard finite-size scaling considerations [8] we can makautisatz

S~ L' fs(1e7T — e T L) 1)

P~ L fp(e® ! — e L) 2
and

N~ L2 fy (je78T — e 2T L) 3)

where fs(x), fp(x) and fy, (x) areuniversal functiongsi.e. independent by..
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Figure 6. (a) Scaling forn, following assumption (4) with parameter = 2.00+ 0.01 and

o = 050+ 0.01 for data of systems with sizds = 100, 200 300, 400. Each set of data is
chosen at a temperature near the correspongiing). As a consequence for each temperature
the quantity(e~?/*" — e=2/Tr)LY/" with T, = 0 andv = 1 is equal to 2.084. Every point in
the graph is an average over 500 consecutive valuesaf L = 100, 2000 forL = 200, 4500
for L = 300, 8000 forL = 400. @) As in (a) but for (6727 — e 2/Tr)L1/» = 0.823 (below
T,(L)). (c) As in (a) but for (e=%T — e=2/Tr) L1/ = 3,567 (aboveT,(L)).

Via data collapse (see figure 4) we estimate the parametét§ e= 0.0000,« = 0.1,
B = 0.00, y = 2.00, andv = 1.00 with an error of one unit in the last given digit.
Therefore, the scaling relatiam+ 28 + y = 2 and the hyperscaling relation2« = vd
are satisfied with good approximation.

In table 1 we give numerical estimates Bf(L). The data are obtained taking for
L = 100, 200, 300, 400 the values off,,(L) at which theS data in a log—log plot versus
le=2/T —e~2/T:(D)| follow two parallel straight lines (one above and one belwL)) with
slopes in good agreement with= 2 and then best-fitting these values ag’&®) ~ 1/L.

3. Fractal dimension and cluster distribution

Let us now consider the fractal dimensi@n of the percolating cluster. From the scaling
invariance hypothesis [8] we know tha ~ £P°~¢, then we obtainD = d — /v
(hyperscaling). In the present case we h@ve 0, thenD = d = 2. The same result is
obtained from the scaling relatigh+ y = Dv.

This is confirmed by the analysis of cluster distribution (see figure 5). The scaling
invariance hypothesis [8, 9] gives f@t — T, ands — oo

ny=s""fo, (1€ T — e 1|57 4)

with t =1+d/D, ¢ = 1/(vD) and f, (x) the universal function.
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Figure 7. Fit of log(—logns;L?) versus logs/400 for a system withL = 100 and
T,(L) ~ 0.46. (@) At T ~ 0.47 > T,(L) the slope is¢ ~ 1, (b) at T ~ 0.45 < T,(L)
the slope ist ~ 3.

From data collapse fon, near7, (see figure G{)) we obtain numerical estimates
of parameters. The data in figurea(are chosen in such a way that the quantity
(e 2T — e 2Ty LY (with e = 0 andv = 1) is a constant withl' ~ T,(L) for
every considered.. The results are = 2.00 ando = 0.50 (with error of one unit in the
last digit), that, with the definitions of ando, give D = 2 andv = 1. On the other hand
these values of ando satisfy the relatiom(2—a) =1t—-1,08=1t—-2,0y =3—1 [8].

From figure 64) we see that the universal functiofy (x) is a bell-shaped curve for
T >~ T,(L). For temperatures slightly belo®, (L) (figure 60)) f,, (x) is shifted, while for
temperatures slightly abovE, (L) (figure 6€)) f,, (x) dramatically changes its shape.

Away from 7, (L) we know [8] that the valid relation is

logn, ~ —s* %)

for s — oo, with ¢ = 1 aboveT,(L) and¢ =1—-1/d = % below T,,(L). This relation
is confirmed with reasonable approximation by our numerical simulations, as shown in
figure 7. Note that, while the exponeft= 1 aboveT,(L) is good for a wide range of
(s = 2000-8000 forL. = 100), the exponent = % below T,(L) is good for a smalles
range § = 2000-4400 for. = 100) since finite-size effect becomes more important below
T,(L). The smaller thel", the smaller is the range.

A direct way to estimate the fractal dimensi@nis given through its definition

s ~ RP (6)
for T = T,, with R radius of gyration of the cluster of size We know [8] that cluster

dimension deviates fronD away from7,, becoming the Euclidean dimensiahbelow
T, and a value smaller tha® aboveT,. This is true because (6) is valid within the
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Figure 8. Estimate ofD from definition (6) versus AL (see table 1): al’ = 0.517 for L = 60,
at7 = 0.481 for L = 80, atT = 0.450 for L = 100, atT = 0.437 for L = 120, atT = 0.389
for L = 200, atT = 0.360 for L = 300 and atl’ = 0.343 for L = 400. The error bars are
probably underestimated. The arrow heads for the asymptotic valie of

connectivity lengthe for all temperatures, but goes to zero away frori,. Unfortunately
data about this relation are difficult to analyse. Indeed rigaL) for every finite system
with L < 120 it seems thaD is aImos:tZ1 = 1.75 (the fractal dimension of a SAW &t
point), but for largerL (see figure 8 and table 1) the fractal dimensi@rgrows slowly to
the asymptotic value 2.

4. Conclusions

We have numerically investigated the KBD-cluster percolation problem in two-dimensional
FF Ising model. From our simulation we found that, within numerical errors, this
correlated site—bond percolation satisfies scaling and hyperscaling relations and have, in
the thermodynamical limit, a percolation temperat@ie= 0 and the exponents = O,
B=0,y=2v=11=20=3 T >T,(L) =1,¢T < T,(L)) = 3. Moreover,

at T, clusters are compact (fractal dimensién= 2). Therefore, we can now correct

the conclusion of [5] and say that, sin@g = 7. and v is equal to the spin-correlation
exponent, the site connectivity length equals the spin-correlation length diverging at zero
temperature. Although the exponents different the coincidence betweérand correlation

length is enough to give an efficient Monte Carlo cluster dynamics [10].

1 As for clusters of parallel spin in the two-dimensional Ising model [6].



Cluster analysis on a two-dimensional system 7375

Acknowledgments

The author is indebted to Antonio Coniglio and to Vittorio Cataudella for many illuminating
discussions and a careful reading of the manuscript. The computations have been done on a
DECstation 3000/500 with Alpha processor and DECsystem 5000/200 with RISC processor.

References

[1] Villain J 1977 J. Phys. C: Solid State Phy$0 1717
Forgacs G 198®hys. RevB 22 4473
[2] Kandel D, Ben-Av R and Domany E 19%hys. Rev. Letit5 941
Kandel D and Domany E 199Rhys. RevB 43 8539
[3] Coniglio A, Stanlg H E and Klein W 1979%hys. Rev. Let42 518
[4] Kerler W and Rehberg P 1998hys. RevB 49 9688
Coddingtan P D and Han L 1994hys. RevB 50 3058
[5] Cataudella V, Franzese G, Nicodemi M, Scala A and Coniglio A 1BBys. Rev. Let47 381; 1994Nuovo
CimentoD 16 1259
[6] Coniglio A and Klein W 1980J. Phys. A: Math. Genl3 2775
[7] Coniglio A, Jan N, Maijd | and StanjeH E 1987Phys. RevB 35 3617
Duplantier B and Saleur H 1987hys. Rev. Lett59 538
[8] Stauffer D and Aharony A 199htroduction to Percolation Theorg2nd edn (London: Taylor and Francis)
[9] D’Onorio De Meo M, Heerman D W and Binder K 199Q). Stat. Phys60 585
[10] Cataudella V, Franzese G, Nicodemi M, Scala A and Coniglio A 1PBg%s. RevE 54 175



