
Cluster analysis for percolation on a two-dimensional fully frustrated system

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1996 J. Phys. A: Math. Gen. 29 7367

(http://iopscience.iop.org/0305-4470/29/23/007)

Download details:

IP Address: 171.66.16.70

The article was downloaded on 02/06/2010 at 04:04

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/29/23
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen.29 (1996) 7367–7375. Printed in the UK

Cluster analysis for percolation on a two-dimensional fully
frustrated system

Giancarlo Franzese
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Abstract. The percolation of Kandel, Ben-Av and Domany clusters for a two-dimensional fully
frustrated Ising model is extensively studied through numerical simulations. Critical exponents,
cluster distribution and fractal dimension of a percolating cluster are given.

1. Introduction

A two-dimensional fully frustrated (FF) Ising model is a model with Ising spins±1
where the interactions between nearest-neighbour spins have modulusJ > 0 and sign
±1 (ferro/antiferromagnetic interactions) and where the signs are chosen in such a way
that everyplaquette(i.e. the elementary cell of the square lattice) isfrustrated, i.e. every
plaquette has an odd number of−1 interactions so that the four spins of the plaquette cannot
simultaneously satisfy all four interactions. In figure 1(1) we give an example of such a
deterministic interaction configuration. In a plaquette of the FF model we can have only
one or three satisfied interactions. The FF model has an analytical solution [1] and a critical
temperature atTc = 0.

Since single-spin dynamics for FF suffers critical slowing down, a fast-cluster dynamics
was introduced by Kandel, Ben-Av and Domany (KBD) in [2].

The KBD clusters are defined by stochastically choosing, on each plaquette of a
chequerboard partition of a square lattice, one bond configuration between the three shown
in figure 1(2).

The probability of choice depends on spins configuration on the plaquette and it is a
function of temperature (correlated site–bond percolation[3]). When there is only one
satisfied interaction the zero-bond configuration is chosen with probability one. When
three interactions are satisfied the zero-bond configuration is chosen with probability
P0 = e−4J/(kT ) (wherek is the Boltzmann constant andT the absolute temperature), the
bond configuration with two parallel bonds on two satisfied interactions is chosen with
probability P1 = 1 − P0 and the third bond configuration has zero probability. Two sites
are in the same cluster if they are connected by bonds. For the sake of simplicity from now
on we chooseJ/(kT ) = 1/T .

Reference [2] has stimulated several works [4, 5] that pay attention mainly to dynamics
and to cluster numbers and cluster sizes. In [5] numerical simulations on relatively large
FF lattice sizes (number of sitesN = 602–1202) supported the idea that the KBD clusters
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Figure 1. (1) Example of a two-dimensional FF lattice: the spin is on the vertices; full lines
represent ferromagnetic interactions (+J ) and broken lines antiferromagnetic interactions (−J ).
(2) Plaquette bond configurations: a, zero bond; b, two parallel vertical bonds; c, two parallel
horizontal bonds.

Figure 2. Typical KBD clusters on a FF lattice with sizeL = 60 with periodic boundary
conditions: (a) at T = 1; (b) at T = 0.65; (c) at T = 0.53 slightly aboveTp(L) ' 0.52; (d) at
T = 0.52 ' Tp(L); (e) at T ' 0 (largest cluster); (f ) at T ' 0 (the second cluster).
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Figure 3. Mean cluster sizeS, percolation probabilityP , cluster numberNc, number of bonds
per lattice siteNb, mean size of largest clusterSI and mean size of second largest clusterSII

versus temperatureT for lattice sizesL = 100, 200, 300, 400. The error bars (often included in
symbols) are the statistical errors.

Table 1. Numerical estimates ofTp(L) andD(L) for L = 60–400. The way used to evaluate
Tp(L) andD(L) give us confidence only on digits not in parentheses.

L 60 80 100 120 200 300 400

Tp(L) 0.51(7) 0.48(1) 0.45(6) 0.43(7) 0.39(2) 0.36(1) 0.34(2)
D(L) 1.7(2) 1.7(5) 1.7(7) 1.7(9) 1.8(2) 1.8(5) 1.8(6)

represent spin-correlated regions (as Coniglio–Klein clusters [6] in the Ising model) and
consequently percolation temperatureTp coincides with critical temperatureTc, percolation
exponents coincide with critical ones and KBD-clusters atTp are two-dimensional self-
avoiding walks (SAW) atθ point [7].

In this paper we extensively study percolation features of KBD-clusters, considering
very large lattice sizes (N = 1002–4002), and give numerical results on critical exponents,
cluster distribution and fractal dimension at the percolation point.
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Figure 4. Scaling forS, P andNc following assumptions (1), (2) and (3) for data of systems
with sizesL = 100, 200, 300, 400. The parameters e−2/Tp = 0.0000± 0.0001,α = 0.1 ± 0.1,
β = 0.00± 0.01, γ = 2.00± 0.01 andν = 1.00± 0.01 are such that the data for different sizes
L collapse on single curves (one for each graph). These curves are, respectively, the universal
functionsfS , fP and fNc . The errors are estimated observing the range of parameters within
which the data points approximately collapse.

2. Critical exponents and the percolation point

We consider finite systems with increasing size (L = 100–400) with periodic boundary
conditions.

A cluster percolates when it connects two opposed system sides. For every sizeL

there is a percolation temperatureTp(L). With Tp (without any argument) we mean the
percolation temperature in the thermodynamic limit, i.e.Tp(L) → Tp for L → ∞. In this
limit percolating clusters are present atT 6 Tp but not atT > Tp. In figure 2 we show
typical clusters at several temperatures for a finite system with sizeL = 60.

For everyL we have studied the mean cluster sizeS = ∑
s s2ns (wheres is the cluster

size,ns the cluster number of sizess per lattice site and the sum is extended over all finite
clusters), the percolation probabilityP = 1 − ∑

s sns , the cluster numberNc = ∑
s ns , the

number of bonds per lattice siteNb, the mean size of the largest (percolating) clusterSI and
the mean size of the second largest (percolating) clusterSII . These quantities are shown in
figure 3 forL = 100–400. Note that forT → 0 the bonds cover 50% of lattice interactions
(that is the random-bond percolation threshold on the square lattice),SII goes to a finite
value (as predicted by KBD [2] and already verified in [4]) and occupies almost 35% of the
lattice, and thatSI occupies almost 65% of the lattice. AtT = 0 only two clusters survive,
as shown in figures 2(e) and (f ).

Now we will give numerical estimates of critical exponents that characterize the KBD-
cluster percolation.

We know [8] that in the thermodynamic limit the mean cluster size diverges forT → Tp,



Cluster analysis on a two-dimensional system 7371

Figure 5. Cluster distributionns versus cluster sizes for a system with sizeL = 100 at several
temperaturesT . Every bin is large 400 unities in cluster size. The percolation temperature for
this system size isTp(L = 100) ' 0.46 then for allT > 0.47, even if the highest bin is not
empty, there are only no percolating clusters. Note that for allT aboveTp(L) it is ns ∼ e−s

and that the distribution become symmetric forT → 0.

the percolation probability goes to zero in the limitT → T −
p and the cluster number goes

to zero forT → T +
p .

We assume that nearTp the connectivity lengthξ (i.e. the typical linear cluster size)
diverges asξ ∼ |e−2/T −e−2/Tp |−ν , the mean cluster size diverges asS ∼ |e−2/T −e−2/Tp |−γ ,
the percolation probability goes to zero asP ∼ |e−2/T − e−2/Tp |β and the cluster number
goes to zero asNc ∼ |e−2/T − e−2/Tp |2−α. The last relations are definitions of critical
exponentsα, β, γ andν.

By standard finite-size scaling considerations [8] we can make theansatz

S ∼ Lγ/νfS(|e−2/T − e−2/Tp |L1/ν) (1)

P ∼ L−β/νfP (|e−2/T − e−2/Tp |L1/ν) (2)

and

Nc ∼ L(α−2)/νfNc
(|e−2/T − e−2/Tp |L1/ν) (3)

wherefS(x), fP (x) andfNc
(x) areuniversal functions, i.e. independent byL.
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Figure 6. (a) Scaling forns following assumption (4) with parameterτ = 2.00 ± 0.01 and
σ = 0.50 ± 0.01 for data of systems with sizesL = 100, 200, 300, 400. Each set of data is
chosen at a temperature near the correspondingTp(L). As a consequence for each temperature
the quantity(e−2/kT − e−2/Tp )L1/ν with Tp = 0 andν = 1 is equal to 2.084. Every point in
the graph is an average over 500 consecutive values ofs for L = 100, 2000 forL = 200, 4500
for L = 300, 8000 forL = 400. (b) As in (a) but for (e−2/T − e−2/Tp )L1/ν = 0.823 (below
Tp(L)). (c) As in (a) but for (e−2/T − e−2/Tp )L1/ν = 3.567 (aboveTp(L)).

Via data collapse (see figure 4) we estimate the parameters e−2/Tp = 0.0000,α = 0.1,
β = 0.00, γ = 2.00, andν = 1.00 with an error of one unit in the last given digit.
Therefore, the scaling relationα + 2β + γ = 2 and the hyperscaling relation 2− α = νd

are satisfied with good approximation.
In table 1 we give numerical estimates ofTp(L). The data are obtained taking for

L = 100, 200, 300, 400 the values ofTp(L) at which theS data in a log–log plot versus
|e−2/T − e−2/Tp(L)| follow two parallel straight lines (one above and one belowTp(L)) with
slopes in good agreement withγ = 2 and then best-fitting these values as e−2/Tp(L) ∼ 1/L.

3. Fractal dimension and cluster distribution

Let us now consider the fractal dimensionD of the percolating cluster. From the scaling
invariance hypothesis [8] we know thatP ∼ ξD−d , then we obtainD = d − β/ν

(hyperscaling). In the present case we haveβ = 0, thenD = d = 2. The same result is
obtained from the scaling relationβ + γ = Dν.

This is confirmed by the analysis of cluster distribution (see figure 5). The scaling
invariance hypothesis [8, 9] gives forT → Tp ands → ∞

ns = s−τ fns
(|e−2/T − e−2/Tp |sσ ) (4)

with τ = 1 + d/D, σ = 1/(νD) andfns
(x) the universal function.
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Figure 7. Fit of log(− lognsL
2) versus log(s/400) for a system withL = 100 and

Tp(L) ' 0.46. (a) At T ' 0.47 > Tp(L) the slope isζ ' 1, (b) at T ' 0.45 < Tp(L)

the slope isζ ' 1
2 .

From data collapse forns near Tp (see figure 6(a)) we obtain numerical estimates
of parameters. The data in figure 6(a) are chosen in such a way that the quantity
(e−2/T − e−2/Tp )L1/ν (with e−2/Tp = 0 and ν = 1) is a constant withT ' Tp(L) for
every consideredL. The results areτ = 2.00 andσ = 0.50 (with error of one unit in the
last digit), that, with the definitions ofτ andσ , give D = 2 andν = 1. On the other hand
these values ofτ andσ satisfy the relationσ(2−α) = τ − 1, σβ = τ − 2, σγ = 3− τ [8].

From figure 6(a) we see that the universal functionfns
(x) is a bell-shaped curve for

T ' Tp(L). For temperatures slightly belowTp(L) (figure 6(b)) fns
(x) is shifted, while for

temperatures slightly aboveTp(L) (figure 6(c)) fns
(x) dramatically changes its shape.

Away from Tp(L) we know [8] that the valid relation is

logns ∼ −sζ (5)

for s → ∞, with ζ = 1 aboveTp(L) and ζ = 1 − 1/d = 1
2 below Tp(L). This relation

is confirmed with reasonable approximation by our numerical simulations, as shown in
figure 7. Note that, while the exponentζ = 1 aboveTp(L) is good for a wide range ofs
(s = 2000–8000 forL = 100), the exponentζ = 1

2 below Tp(L) is good for a smallers
range (s = 2000–4400 forL = 100) since finite-size effect becomes more important below
Tp(L). The smaller theT , the smaller is thes range.

A direct way to estimate the fractal dimensionD is given through its definition

s ∼ RD (6)

for T = Tp, with R radius of gyration of the cluster of sizes. We know [8] that cluster
dimension deviates fromD away from Tp, becoming the Euclidean dimensiond below
Tp and a value smaller thanD aboveTp. This is true because (6) is valid within the
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Figure 8. Estimate ofD from definition (6) versus 1/L (see table 1): atT = 0.517 forL = 60,
at T = 0.481 for L = 80, atT = 0.450 for L = 100, atT = 0.437 for L = 120, atT = 0.389
for L = 200, atT = 0.360 for L = 300 and atT = 0.343 for L = 400. The error bars are
probably underestimated. The arrow heads for the asymptotic value ofD.

connectivity lengthξ for all temperatures, butξ goes to zero away fromTp. Unfortunately
data about this relation are difficult to analyse. Indeed nearTp(L) for every finite system
with L 6 120 it seems thatD is almost 7

4 = 1.75 (the fractal dimension of a SAW atθ
point), but for largerL (see figure 8 and table 1) the fractal dimensionD grows slowly to
the asymptotic value 2.

4. Conclusions

We have numerically investigated the KBD-cluster percolation problem in two-dimensional
FF Ising model. From our simulation we found that, within numerical errors, this
correlated site–bond percolation satisfies scaling and hyperscaling relations and have, in
the thermodynamical limit, a percolation temperatureTp = 0 and the exponentsα = 0,
β = 0, γ = 2, ν = 1, τ = 2, σ = 1

2, ζ(T > Tp(L)) = 1, ζ(T < Tp(L)) = 1
2. Moreover,

at Tp, clusters are compact (fractal dimensionD = 2). Therefore, we can now correct
the conclusion of [5] and say that, sinceTp = Tc and ν is equal to the spin-correlation
exponent†, the site connectivity lengthξ equals the spin-correlation length diverging at zero
temperature. Although the exponentγ is different the coincidence betweenξ and correlation
length is enough to give an efficient Monte Carlo cluster dynamics [10].

† As for clusters of parallel spin in the two-dimensional Ising model [6].
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